Previous: Diagrams   | Next: Prolegomenon I

Engenetics Tables

Table 1: Brassica rapa’s Equilibrium Age Distribution Population
from Chapter 5: Proof by experiment

Stage

Av. indiv. mass, m̅

Av. indiv. energy, h̅

Energy Flux, µ

Time

N, in biomoles

Seed

1.171 x 10-3 grams/sec

1.017 joules

3.276 x 10-05 watts

0 days

1.096 [x 103]

Leaf

4.977 x 10-2 grams/sec

7.021 joules

4.151 x 10-04 watts

6 days

0.767 [x 103]

Flowering

6.503 x 10-2 grams/sec

15.232 joules

1.949 x 10-4 watts

9 days

0.724 [x 103]

Fruit

8.717 x 10-2 grams/sec

13.959 joules

1.124 x 10-04 watts

18 days

0.662 [x 103]

Dry seed

1.049 x 10-1 grams/sec

15.558 joules

0 watts

32 days

1.751 [x 103]

Seed

1.171 x 10-3 grams/sec

1.017 joules

3.276 x 10-05 watts

36 days

1.096 [x 103]

Table 2: Data for Chorthippus brunneus; member of Acrididae
from Chapter 19: A better way to the answer
 

Year

Season

Stage in cycle

Numbers produced

Average mass (mg)

Days lived

 

1947

Autumn

Adults

1,200

148.2

42

Generation I

   

Pods

4,006

47.0

188

 

Winter

Eggs

44,063

4.0

209

1948

Spring

First Instar Nymphs

3,513

5.1

27

   

Second Instar Nymphs

2,529

11.3

25

 

Summer

Third Instar Nymphs

1,922

31.6

28

   

Fourth Instar Nymphs

1,461

65.8

32

 

Autumn

Adults

1,300

148.9

44

Generation II

   

Pods

2,432

40.3

186

 

Winter

Eggs

22,614

4.0

207

1949

Spring

First Instar Nymphs

16,620

5.1

28

   

Second Instar Nymphs

14,958

11.4

26

 

Summer

Third Instar Nymphs

13,462

32.8

29

   

Fourth Instar Nymphs

7,000

70.7

33

 

Autumn

Adults

3,500

137.6

43

Generation III

   

Pods

9,976

44.3

191

 

Winter

Eggs

111,728

3.7

212

1950

Spring

First Instar Nymphs

48,191

4.8

27

   

Second Instar Nymphs

25,541

10.4

25

 

Summer

Third Instar Nymphs

13,592

28.6

28

   

Fourth Instar Nymphs

5,233

58.3

33

 

Autumn

Adults

2,250

107.3

39

Generation IV

   

Pods

1,269

25.9

191

 

Winter

Eggs

10,406

2.9

212

1951

Spring

First Instar Nymphs

1,700

4.0

25

   

Second Instar Nymphs

1,496

8.8

23

 

Summer

Third Instar Nymphs

1,302

24.1

26

   

Fourth Instar Nymphs

1,148

49.2

30

 

Autumn

Adults

1,090

122.3

49

Generation V

   

Pods

1,483

27.5

170

 

Winter

Eggs

11,274

3.3

189

Table 3: Brassica rapa’s Franklin factor and Franklin energy
from Chapter 32: The four laws of biology

Stage

Avg. indiv. mass, m_

Franklin factor, K

Potential of energy

Franklin energy, F

Seed

1.171 x 10-3 grams/sec

0.829

9.710 x 10-4 grams/sec

2.142 x 10-3 grams/sec

Leaf

4.977 x 10-2 grams/sec

-0.052

-2.567 x 10-3 grams/sec

4.720 x 10-2 grams/sec

Flowering

6.503 x 10-2 grams/sec

0.367

2.384 x 10-2 grams/sec

8.888 x 10-2 grams/sec

Fruit

8.717 x 10-2 grams/sec

0.074

6.415 x 10-4 grams/sec

9.359 x 10-2 grams/sec

Dry seed

1.049 x 10-1 grams/sec

0

0.000 grams/sec

1.049 x 10-1 grams/sec

Seed

1.171 x 10-3 grams/sec

0.829

9.710 x 10-4 grams/sec

2.142 x 10-3 grams/sec

Table 4: Unit Normal Vectors for Brassica rapa
from Chapter 44: A time scale for natural selection
 

Numbers

Average individual mass

Visible presence

Unit normal

1.000 biomoles

9.248 x 10-2 grams/sec

8.970 x 10-3 grams/joule

Minimum

0.662 biomoles

1.171 x 10-3 grams/sec

6.740 x 10-3 grams/joule

Maximum

1.096 biomoles

1.049 x 10-1 grams/sec

1.120 x 10-2 grams/joule

Table 5: Brassica rapa’s Individual and Population Data
from Chapter 50: The demonstration

Stage

Number (biomoles)

Mass (grams)

Energy (joules)

Flux (watts)

Seed

1.096

     

Indiv.

 

1.171 x 10-03

1.017

3.276 x 10-05

Pop.

 

1.283

1,114.587

3.591 x 10-02

Leaf

0.767

     

Indiv.

 

4.977 x 10-03

7.021

4.151 x 10-04

Pop.

 

38.153

5,382.197

3.182 x 10-01

Flowering

0.724

     

Indiv.

 

6.503 x 10-02

15.232

1.949 x 10-04

Pop.

 

47.070

11,024.883

1.410 x 10-01

Fruit

0.662

     

Indiv.

 

8.717 x 10-02

13.959

1.124 x 10-04

Pop.

 

57.710

9,241.168

7.443 x 10-02

Dry Seed

1.751

     

Indiv.

1.060 x 10-01

15.558

0.000

Pop.

 

183.686

27,249.289

0.000

Seed

1.096

     

Indiv.

 

1.171 x 10-03

1.017

3.276 x 10-05

Pop.

 

1.283

1,114.587

3.591 x 10-02

Table 6: Four evolutionary factors for Brassica rapa: energy multiples
from Chapter 51: Conclusion: A general theory of biology

Evolutionary Potential, η

 

Minimum

Maximum

Multiple

Haeckel potential, ηH

Generation time

3

days

14

days

3,110.4

Darwin potential, ηD

Numeracy

0.662

biomoles per second

1.096

biomoles per second

1

Mendel potential, ηM

Mass

1.171 x 10-3

grams per second

1.049 x 10-1

grams per second

9.248 x 1010

Gibbs potential, ηG

Visible presence

6.740 x 10-3

kilogrammes per joule

1.120 x 10-2

kilogrammes per joule

8.970 x 1012

Table 7: The stress-energy tensor
from Chapter 51: Conclusion: A general theory of biology

stress-energy tensor

Table 8: The biological stress-energy tensor
from Chapter 51: Conclusion: A general theory of biology
          H
a
e
c
k
e
l

p
o
t
e
n
t
i
a
l
ηH
  Three engenetic burdens
(relative measures)
Engenetic burden of fertility, φ Engenetic burden of components mass, κ Engenetic burden of conformation, χ
Three constraints
(absolute measures)
Constraint of constant propagation (joules per generational increment) Constraint of constant size (joules per biomole) Constraint of constant equivalence (watts per kilogramme)
n
entities
q
molecules
w
bonding
 
Four potentials (relative measures) Haeckel     T00          
potential, ηH       T01 T02 T03
Darwin Three fluxes (absolute measures) Number flux, Q (biomoles per second) n     T10 T11 T12 T13  
potential, ηD entities     Pronumeracy Anumeracy Anumeracy  
Mendel Mass flux, M (kilogrammes per second) q   T20 T21 T22 T23 Compensatory
potential, ηM molecules     Abundance Probundance Abundance Development
Gibbs Energy flux, P, (joules per second) w   T30 T31 T32 T33  
potential, ηG bonding     Accreativity Accreativity Procreativity  
  Compensatory Essential
Development Development
Table 9: The four evolutionary factors for Brassica rapa: complete
from Chapter 51: Conclusion: A general theory of biology

 

Multiples

Deviations

Minimum

Maximum

Haeckel potential, ηH

3,110.4

0.625

9

36 days

days per biomole

days per biomole

Darwin potential, ηD

1

0.121

0.662

1.096

biomoles per second

biomoles per second

Mendel potential, ηM

9.248 x 1010

0.427

1.171 x 10-3

1.049 x 10-1

grams per second

grams per second

Gibbs potential, ηG

8.970 x 1012

1

6.740 x 10-3

1.120 x 10-2

kilogrammes per joule

kilogrammes per joule

Evolutionary potential, η

9.062 x 1012

1.173


1.063 x 1013